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Musical rhythm is a complex experiences, which is structured in time. Furthermore, every musical event has a distinct 
sound. Thus, it is plausible that investigations in rhythm have to consider its sound, too. Commonly, sounds are 
discriminated by their timbre. Therefore, rhythm can be described as succession of distinct timbres. We developed a 
method to model drum patterns in such a manner. Timbre is approximated as a one-dimensional feature consisting of 
weighted spectral centroid. An onset detection algorithm based on fractal geometry determines the time frames of 
measurement within the input audio file. The resulting time series is used to train an m-state Hidden Markov Model. 
The model’s transition probability matrix serves as a fingerprint of the sample’s rhythm. This method can therefore be 
used to compare music quantitatively and to reveal and cluster musical similarities in sound recording archives.

  

Listeners of popular music are mostly 
confronted with a rhythmical base structure, 
contributed by drums and percussions, over  
which harmonies are played by different 
instruments. On top, there is a melody sung 
by a vocalist. This most typical genre of 
popular music, the song, is often said to have 
a certain groove. This notion is ambiguous 
and so is the research in groove. Since 
rhythm perception is tied to the perception of 
passing time, a lot of research has been done 
focusing on the temporal aspect of groove. 
For example, Frühauf et al. (2013) 
investigated in the influence of microtiming  
on groove perception. Madison (2006) 
conducted an adjective-rating study in order 
to reveal what is commonly connoted with 
music having groove. It is widely accepted 
that groove is a perceptual quality arising 
from certain rhythmical patterns. These 
patterns are said to strongly induce 
movements like tapping one’s feet or nodding 
one’s head to the beat of the music.  
Besides that, rhythm patterns seem to 
develop their very own „feeling“, when played 
by an appropriate instrument, e.g. a drum 
set. This feeling seems to be robust against 
definite changes in the pattern. For example, 
replacing the first hi-hat on the second 
quaver of Figure 2 by two semiquavers does 
not change the patterns feeling. The same 
holds when replacing all snares (quavers 3 
and 7) by hand claps. However, swapping 

quaver 6 and 7 alters the feeling of the 
pattern significantly. From this simple and 
easily comprehensible example we can 
conclude, that the length of the inter onset 
intervals, the microtiming and the other time 
related parameters are not the only ones 
crucial for musical rhythm perception. In fact 
the sound and the order of the single events 
contribute a lot to how we perceive a rhythm 
pattern.  

Figure 1. Simple drum pattern. The note F represents 
the bass drum, C the snare drum and the ghost note G 
the hi-hat. 

Bader and Markuse (1994) found evidence 
that the perception of meter is influenced by 
the instruments involved in a pattern. Within 
a continuous stream of bass drum kicks, each 
one is rather perceived as on beat, whereas 
this does not hold for the hi-hat. It is mostly 
perceived as sounding off-beat. If the feeling 
of drum patterns can be fundamentally 
changed by swapping instruments and the 
choice of instrument influences the perception 
of meter,  we can plausibly assume a mental 
timbre-related process with strong 
inducement to rhythm perception.  
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The matter in hand includes a model to 
analyze drum patterns in terms of the timbres 
occurring within them. It comprises of an 
onset detector, retrieving note onsets in an 
audio signal, a feature extraction procedure 
and a Hidden Markov model to investigate 
time series of quantified timbre 
representations.  

 

Onset Detection 
The crucial part of feature extraction is to 
determine the times of measurement. To this 
end we developed a onset detection 
algorithm. In this, we unitized common 
results of information theory (Shannon, 1998) 
in order to detect note onsets in digital audio 
signals. Each note played on a real 
instrument begins with a transient. A 
transient is a chaotic event. Chaos means 
unpredictable fast changes in the signal. 
Thus, chaos in audio signals is perceived as 
noise. Therefore, one approach to onset 
detection is to scan for regions with a high 
relative noise level. To this end, an input 
signal is segmented into a number of pieces 
of equal length ls. Each part is then 
embedded into a two-dimensional pseudo-
phase space. For each segment the 
information entropy HN can be calculated 
from its corresponding pseudo-phase space 
as   

 
 

High levels of noise correspond to high levels 
of information. Therefore, transient regions  
in the musical signal represent regions of 
relative high entropy. A steady tone with little 
changes has a relative low entropy because 
the signal does not comprise much 
information. During a transient, however, the 
signal changes very fast in an unpredictable 
way, which leads to a high entropy. Having all  

the entropy values calculated, the problem of 
onset detection is reduced to detecting 
relative maxima in the time series of entropy. 
The described algorithm applies especially for 
detecting onsets of unpitched percussion 
instruments. With simple drum-only samples, 

the algorithm returns 100 % true positives. 
However, the performance decreases with 
musical complexity.  

 

 

 

Figure 2. Representation of the pseudo-phase spaces of 
four successive related segments of an audio input. The 
lower left picture corresponds to a relative high entropy 
of H32

 = 0.992048. The related audio segment involves 
an onset. 

Timbre features 

Different instruments are discriminated by 
their timbres. Many multi dimensional scaling 
surveys concerning musical timbre showed 
that a timbre space of at most three 
dimensions is adequate to represent the 
essence of timbre perception. The 
interpretation of the physical correlates of the 
perceptual dimensions is similar in most 
studies (Grey, 1977; Wessel 1979; Inverson 
& Krumhansl, 1993; Hourdin et al. 1997; 
Lakatos, 2000). The timbre spaces comprise 
at least one temporal and one spatial 
dimension. The spatial dimension was always 
interpreted as brightness (Bader, 2013). Even 
experiments using semantic analysis found 
similar results (von Bismarck, 1974; 
Zacharakis, et al., 201). Thus, brightness 
seems to be one of the prominent dimensions 
of timbre perception. Especially when 
investigating percussion instruments, 
brightness seems to be a salient feature 
(Lakatos, 2000). Brightness strongly 
correlates with the spectral centroid, which is 
easily calculated as the „center of gravity“ of 
a power spectrum. The model proposed here 
should be apt to analyzed drum patterns. In 
future versions it will be utilized to analyze 
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large data bases of poorly recorded 
ethnographic audio data. It is thus important 
to keep its foundation performant but with a 
maximum precision. Therefore, a one-
dimensional feature vector comprising only 
the spectral centroid is justified.  

 

Model 
The goal of this work is to develop a 
quantitative representation of the 
perceptional quality of a drum pattern. To this 
end, a given audio signal is first analyzed with 
the onset detection algorithm, which returns 
the audio frame indices at which an onset 
would be perceived. At these frames feature 
extraction calculates the spectral centroid and 
weights it by the maximal amplitude of the 
segment. The resulting time series is fed to 
the Hidden-Markov mode procedure. Figure 3 
depicts the model’s structure. HMMs are 
stochastic processes commonly used to model 

Figure 3. Data flow of the rhythm analysis model. 

discrete as well as continuous  valued time 
series data. They have recently been applied 
to diverse fields such as speech recognition 
(Rabiner, 1989), analysis of melody and 
rhythm (Mavromatis, 2004; Mavromatis, 
2005; Mavromatis 2012), chord estimation 
(Lee & Slaney, 2006), live improvisation and 
human computer interaction with musical 
agents (von Nort et al. 2010; Braasch, 2013), 
segmentation (Aucouturier & Sandler, 2001) 
and automatic sound classification (Zhang & 
Jay Kuo, 1998; Zhang & Jay Kuo, 1999). 
Hidden Markov models are comprised of an 
unobserved Markov Chain as a state-

dependent process and a random distribution 
representing the parameter process and 
producing visible observations. The key 
feature of Markov Chains is the Markov-
Property, which links past with present events 
by loosening the assumption of 
independence. It states that the probability of 
a random variable X to be in a state s at a 
future time step t+1 depends only on the 
present state of X, so that 

 
holds for every t ∈ N. Thus, for each possible 
state of X there is a probability of moving to 
each other state. These values are combined 
in the transition probability matrix Γ, where 
each row and column represents one of m 
given states. To each state, a random distri-
bution is assigned producing observations ac-
cording to a set of parameters. We combined 
a Markov Chain with a Poisson Mixture Model 
as proposed by Zucchini & MacDonald (2009). 
The latter takes only one parameter, which is 
the mean λ. Figure 3 depicts a simple 3-state 
HMM with Poisson mixture. Our basic as-
sumption is that the spectral centroid time 
series is produced by a mixture of m Poisson 
distribution with means λi, i ∈ {1, …, m}. The 
selection of the mean is in turn governed by 
the hidden Markov Chain with an unknown 
transition probability matrix. Having in mind 
that perception supposedly places definite 
timbres to particular rhythmical positions 
(bass drum „belongs“ to „on beat“, etc.) we 
can model drum patterns as sequences of dis-
tinct timbres, whose order is dictated by a 
stochastic process. The hidden sequence of 
states then refers to a perceptual process 
that responds to changes in timbre. The com-
putational task is therefore to estimate a set 
of parameters, which are in this case the en-
tries of the transition probability matrix Γ and 
the vector of means λ from the a given se-
quence of spectral centroid values. This is 
done using the Baum-Welch algorithm 
(Baum, 1970).   
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Figure 4. A 3-state Poisson-HMM. The ovals depict the 
sates of the hidden Markov Chain. The solid arrows 
represent possible transition between the states. 
Rectangles represent the Poisson distribution. The 
dashed arrows illustrate the affiliation of a distribution to 
a state. 

Training data 
We trained HMMs for 95 audio samples. 
These were generated using Apple’s Garage 
Band sequencer. This software provides live 
recorded drum loops, which can be altered 
regarding two scales: soft—loud and simple—
complex. Each scale has four discrete steps, 
so we generated 16 samples for each of five 
presets. All samples are eight bars long and 
have a duration between 19 and 24 seconds. 
They were delivered to the model as 16 bit 
.wav files of 44.1 kHz sample rate. 
Additionally, we analyzed two simple drum 
samples in order to ease the visualization. 
These samples were synthesized using 
GarageBand and then converted to audio files 
using the same specifications as above. 

Results 
Results will be presented using the two 
synthesized example files beat.wav and 
edgy.wav. In the first file the drum computer 
plays the rhythm pattern given in Figure 1. To 
visualize the model’s performance we plotted 
the waveform of the input and coloured the 
areas where the spectral centroid was 
measured. Each colour represents a hidden 
state of the Markov Chain. The areas of 
measurement are much larger then the 
segments in which the onsets were found. 
Evaluation of the method revealed that the 
quality of the results strongly depends on the 
area of measurement. The detector localizes 

an onset during the transient, in an area of 
800 sample points length. This parameter is 
adaptable and influences the precision. 
During the onset  spectral centroid has 
another value than during steady state. 
Hence, we expanded the region of 
measurement to five times the length of one 
segment, which yielded good results while 
experimenting. 

Local decoding of an HMM means calculating 
the most probable sequence of hidden states 
given a sequence of observations. That 
implies for our model to find for every 
measured spectral centroid value the poisson 
that most probably produced it. For each 
mean there is a connected and yet un-
interpreted hidden state. Matching the 
sequence of the most probable states with  

Figure 5. Local decoding of beat.wav. X-axis represents 
the frame index of the audio signal, y-axis the amplitude. 
The colors represent a hidden state of the Markov model: 
blue corresponds to the bass drum, yellow to the snare 
and purple to the hi-hat. 

observations made, reveals how the states 
are to be understood. Figure 5 shows a local 
decoding of a 3-state HMM, which was trained 
on beat.wav. Obviously the states can be 
interpreted as bass drum (blue), snare drum 
(yellow) and hi-hat (purple). This shows that 
the model can distinguish the instruments of 
a drum set in human-like way by only 
learning spectral centroids data. Furthermore, 
the model managed to assign every 
observation to the right state. The second 
result is not really surprising since the model 
was trained from the same data.  
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Figure 6: Centroid frequencies measured in edgy.wav 
plotted according their order of measurement. Clearly 
visible are the streams and characteristic patterns. 

Interesting results can be delivered by plot-
ting the values of the spectral centroids 
against the number of measurements, as in 
Figure 6 using a 5-state HMM of edgy.wav. As 
above, each colour refers to one hidden 
state.Again, there are several interesting 
things to mention. First, it is seems obvious 
that the model chooses the means in a plau-
sible way. One can clearly recognize five sep-
arate streams. Second, within these streams 
there are apparently patterns, which refer to 
small but steady changes of the spectral cen-
troid. This possibly represents slight changes 
of articulation. At this time we are unfortu-
nately not able to explain this phenomenon. 
The third thing to mention is that model could 
derive 5 different states, but the samples it 
was trained on does only involve three differ-
ent instruments: snare, bass drum and hi-
hat. These extra states refer to mixture-
timbres, which arise from two instruments 
played at the same time. 

Conclusion 
We proposed a timbre-based system in order 
to model and analyze rhythm patterns. The 
above results show that the model can 
recognize and distinguish different 
instruments according to their spectral 
centroid. Small changes in timbre, probably 
resulting from patterns of accents are 
assigned to the right mean. On the other 
hand, mixtures of timbres are assigned to an 
extra state. Given that mixtures arise only at 
certain positions on the pattern, the model 
learned hidden, timbre-related structures of 
the rhythmical pattern. In this light the 
proposed model is a promising candidate for 
rhythm fingerprinting. Still, much evaluation 
has to be done. At this time we work with 
covariance matrices of the resulting transition 
probabilities as well as on a self-organizing 

map to illustrate similarity between different 
models.  

 

References 

Aucouturier, J.J., & Sandler, M. (2001). Seg-
mentation of musical signals using Hid-
den Markov models. 10th convention of 
the audio engineering society. 

Bader, R., Markuse, B. (1994). Perception 
and analyzing groove in popular music. 
Proceedings of the 3rd international 
conference for music perception and 
cognition, 401 – 402. 

Bader, R. (2013). Nonlinearities and Synchro-
nization in Musical Acoustics and Music 
Psychology. 

Baum, L. Petrie, T., Soules, G. & Weiss, N. 
(1970). A maximization technique of 
probabilistic functions of Markov Chains. 
The Annals of Mathematical Statistics, 
41(1), 164 – 1771.  

Braasch, J. (2013). The µ cosm project: an 
introspective platform to study intelli-
gent agents in the context of musical 
ensemble improvisation. Bader, R. 
Sound - Perception - Performance, 257 
– 270. 

Frühauf, J., Kopiez, R. & Platz, T. (2013). Mu-
sic on the timing grid: The influence of 
microtiming on perceived groove quality 
of a simple drum pattern performance. 
Musicae Scientiae 17: 246. 

Grey, J. M. (1977). Multidimensional percep-
tual scalings of musical timbres. Journal 
of the Acoustical Society of America, 
61(5), 1270 – 1277. 

Hourdin, C., G., Charbonneau, & Moussa, T. 
(1997). A Multidimensional Scaling 
Analysis of Musical Instruments’ Time-
Varying Spectra. Computer Music Jour-
nal, 21(2), 40 – 55. 

Inverson, P., & Krumhansl, C.L. (1993). Iso-
latingthe dynamicattributesof musical- 
timbre. Journal of the Acoustical Society 
of America, 94(5), 2595 – 2603. 

Lakatos, S. (2000). A Common Perceptual 
Space for Harmonic and Percussice Tim-
bres. Perception & Psychophysics, 
62(7), 1426 – 1439. 

Lee, K., & Slaney, M. (2006). Automatic 
Chord Recognition from Audio Using an 



   SysMus14 – International Conference of Students of Systematic Musicology - Proceedings 

  
 

 6 

HMM with Supervised Learning. ISMIR 
Proceedings. 

Madison, G. (2006). Experiencing Groove In-
duced by Music: Consistency and Phe-
nomenology. Music Perception, 24(2), 
201-208. 

Mavromatis, P. (2004). A Hidden Markov 
model of melody in greek church chant. 
Proceedings of the 8th international 
conference on music perception and 
cognition. 

Mavromatis, P. (2005). A Hidden Markov 
model of melody production in greek 
church chant. Computing in Musicology, 
14, 93 – 112. 

Mavromatis, P. (2012). Exploring the rhythm 
of the palestrina style. Journal of music 
theory, 2(56), 169 – 223. 

Rabiner, L. (1989). A tutorial to Hidden Mar-
kov models d selected applications in 
speech recognition. Proceedings of the 
IEEE, 77(2), 257 – 286. 

Shannon, C. E. (1998). Communication in the 
presence of noise. Proceedings of the 
IEEE, 86, 447-457.  

van Nort, D. Braasch, J. & Oliveros, P. 
(2009). A system for musical improvisa-
tion combining sonic gestures recogni-
tion and genetic algorithms. Proceedings 
of the 6th sound and music computing 
conference, 131 – 136. 

van Nort, D. Braasch, J. & Oliveros, P. 
(2010). Developing systems for improv-
isation based on listening. Proceedings 
of the international computer music 
conference, 108 – 115. 

von Bismarck, G. (1974). Timbre of Steady 
Sounds: A Factorial Investigation of its 
Verbal Attributes. Acustica, 3(3), 146 – 
159. 

Wessel, D. L. (1979). Timbre Space as a Mu-
sical Control Structure. Computer Music 
Journal, 3(2), 45 – 52. 

Zacharakis, A., Pastiadis, K., Papadelis, G., & 
Reiss, J.D. (2011). An Investigation of 
Musical Timbre: Uncovering Salient Se-
mantic Descriptors and Perceptual Di-
mensions. Proceedings of the 11th In-
ternational Society for Music Infor-
mation Retrieval Conference. 

Zhang, T. & Jay Kuo, C.C. (1998). Hierar-
chical system for content-based audio 
classification and retrieval. SPIES’s con-

ference on multi- media storage and ar-
chiving systems III, 398 – 409. 

Zhang, T. & Jay Kuo, C.C. (1999). Heuristic 
approach for generic audio data seg-
mentation and annotation. ACM multi-
media conference, 67 – 76. 

Zucchini, W., & MacDonald, I.L. (2009). Hid-
den Markov Models for Time Series. 


